Electromagnetic fields between moving mirrors: singular waveforms inside Doppler cavities

Author:

Koutserimpas Theodoros T.1ORCID,Valagiannopoulos Constantinos23ORCID

Affiliation:

1. Princeton University

2. Nazarbayev University

3. National Technical University of Athens

Abstract

Phenomena of wave propagation in dynamically varying structures have reemerged as the temporal variations of the medium’s properties can extend the possibilities for electromagnetic wave manipulation. While the dynamical change of the electromagnetic medium’s properties is a difficult task, the movement of scatterers is not. In this paper, we analyze the electromagnetic fields trapped inside two smoothly moving mirrors. We employ the method of characteristics and take into account the relativistic phenomena to show that the temporally and spatially local Doppler effects can filter and amplify the electromagnetic signal, tailoring the k − and ω −content of the transients. It is shown using the Doppler factor and the change of the distance between neighbor characteristics that the dynamical movement of the boundaries can lead to condensation or dilution of characteristics resulting in field amplification or attenuation, respectively. In the case of periodically moving mirrors the field distribution is shown that asymptotically leads to exponentially growing delta-like wave packets at discrete points of space with a limiting number of peaks due to the fact that the velocity of the mechanical vibrations cannot exceed that of light. The theoretical analysis is also verified by FDTD simulations and is connected with the theory of mode locking.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Nazarbayev University

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3