Impact of color on polarization-based 3D imaging and countermeasures

Author:

Cai Yudong12,Liu Fei123ORCID,Shao Xiaopeng123,Cai Guocheng12

Affiliation:

1. Xidian University

2. Xi’an Key Laboratory of Computational Imaging

3. Science and Technology on Electro-Optical Information Security Control Laboratory

Abstract

Diffuse polarization-based 3D imaging has flourished with the ability to obtain the 3D shapes of objects without multiple detectors, active mode lighting, or complex mechanical structures, which are major drawbacks of other methods for 3D imaging in natural scenes. However, traditional polarization-based 3D imaging technology introduces color distortion when reconstructing the surface of multi-colored targets. We propose a polarization-based 3D imaging model to recover the 3D geometry of multi-colored Lambertian objects. In particular, chromaticity-based color removal theory is used to restore the intrinsic intensity, which is modulated only by the target shape, and we apply the recovered intrinsic intensity to address the orientation uncertainty of target normals due to azimuth ambiguity. Finally, we integrate the corrected normals to reconstruct high-precision 3D shapes. Experimental results demonstrate that the proposed model has the ability to reconstruct multi-colored Lambertian objects exhibiting non-uniform reflectance from single views under natural light conditions.

Funder

National Natural Science Foundation of China

Foundation of Science and Technology on Electro-Optical Information Security Control Laboratory

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. TPFNet: a tri-band polarimetric image fusion neural network;Sixth Conference on Frontiers in Optical Imaging and Technology: Imaging Detection and Target Recognition;2024-04-30

2. A Novel Three-Dimensional Reconstruction Technology for the Defect Inspection of Tubing and Casing;Processes;2023-07-20

3. Monocular polarized three-dimensional absolute depth reconstruction technology for multi-target scenes;Applied Optics;2023-07-11

4. Polarization 3D imaging technology: a review;Frontiers in Physics;2023-05-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3