Continuous fabrication of polarization maintaining fibers via an annealing improved infinity additive manufacturing technique for THz communications

Author:

Xu Guofu1ORCID,Skorobogatiy Maksim1ORCID

Affiliation:

1. École Polytechnique de Montréal

Abstract

We report the design and fabrication of a polarization-maintaining fiber for applications in fiber-assisted THz communications. The fiber features a subwavelength square core suspended in the middle of a hexagonal over-cladding tube by four bridges. The fiber is designed to have low transmission losses, high birefringence, high flexibility, and near-zero dispersion at the carrier frequency of 128 GHz. An infinity 3D printing technique is used to continuously fabricate a 5 m-long polypropylene fiber of ∼6.8 mm diameter. The fiber transmission losses are furthermore reduced by as high as ∼4.4 dB/m via post-fabrication annealing. Cutback measurements using 3 m-long annealed fibers show ∼6.5-11 dB/m and ∼6.9-13.5 dB/m losses (by power) over a 110-150 GHz window for the two orthogonally polarized modes. Signal transmission with bit error rates of ∼10−11-10−5 is achieved at 128 GHz for 1-6 Gbps data rates using a 1.6 m-long fiber link. The average polarization crosstalk values of ∼14.5 dB and ∼12.7 dB are demonstrated for the two orthogonal polarizations in fiber lengths of 1.6-2 m, which confirms the polarization-maintaining property of the fiber at ∼1-2 meter lengths. Finally, THz imaging of the fiber near-field is performed and shows strong modal confinement of the two orthogonal modes in the suspended-core region well inside of the hexagonal over-cladding. We believe that this work shows a strong potential of the infinity 3D printing technique augmented with post-fabrication annealing to continuously produce high-performance fibers of complex geometries for demanding THz communications applications.

Funder

Canada Research Chairs

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. 柔性介质金属膜太赫兹波导的传输特性与应用;Laser & Optoelectronics Progress;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3