Modulation format recognition with transfer learning assisted convolutional neural network using multiple Stokes sectional plane image in multi-core fibers

Author:

Guo Zhiruo1,Liu Bo1,Ren Jianxin1,Wu Xiangyu1,Li Ying1,Mao Yaya1,Chen Shuaidong1,Zhong Qing1,Zhu Xu1,Wu Yongfeng1,Chen Yunyun1

Affiliation:

1. Nanjing University of Information Science & Technology

Abstract

A modulation format recognition (MFR) scheme based on multi-core fiber (MCF) is proposed for the next generation of elastic optical networks (EONs). In this scheme, multiple Stokes sectional planes images are used as signal features which are typed into a transfer learning (TL) assisted convolutional neural network (CNN) to realize MFR. Compared with the traditional Jones matrix, the Stokes space mapping method is insensitive to polarization mixing, carrier frequency skew and phase offset, therefore, it has better feature representation ability. TL is introduced to transfer the model used in standard single-mode fiber (SSMF) to MCF transmission, reducing the required training data and complexity. In addition, multiple Stokes sectional planes images are input simultaneously, which improves the accuracy of the neural network. Experimental verifications were performed for a polarization division multiplexing (PDM)-EONs system at a symbol rate of 12.5GBaud by 5 km MCF. Nine modulation formats, including three standard modulation formats (BPSK, QPSK, 8PSK), three uniformly shaped (US) modulation formats (US-8QAM, US-16QAM, US-32QAM) and three probabilistically shaped (PS) modulation formats (PS-8QAM, PS-16QAM, PS-32QAM), were recognized by our scheme. The experimental results show that the scheme achieves high recognition accuracy even at low optical signal-to-noise ratio (OSNR). Moreover, the required number of training samples is less 40% compared to the traditional CNN. The proposed scheme has a high tolerance to the crosstalk damage of MCF itself and can realize the short training time of large-capacity space division multiplexing (SDM)-EONs. Our findings have the potential to be used in the next generation of a SDM fiber transmission system.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Open Fund of IPOC

Opened Fund of the State Key Laboratory of Integrated Optoelectronics

Jiangsu team of innovation and entrepreneurship

The Startup Foundation for Introducing Talent of NUIST

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3