Affiliation:
1. Hubei University of Technology
2. Northwest Engineering Corporation Limited
3. Beijing Institute of Space Mechanics & Electricity
4. Chinese Academy of Sciences
Abstract
When some sub-images lack ground control points (GCPs) or GCPs are not evenly distributed, the estimated camera parameters are often deviated in in-orbit geometric calibration. In this study, a feasible in-orbit geometric calibration method for multi-linear array optical remote sensing satellites with tie constraints is presented. In the presented method, both GCPs and tie points are employed. With the help of tie constraints provided by tie points, all charge coupled devices (CCDs) are logically connected into a complete CCD. The internal camera parameters of all CCDs can then be simultaneously and precisely estimated, even if sufficient evenly distributed GCPs in some sub-images are unavailable. Three GaoFen-6 images and two ZiYuan3-02 images were tested. Compared with the conventional method, the experimental results showed that the deviations of the estimated camera parameters could be effectively eliminated by the presented method. The average geometric stitching accuracy of the adjacent sub-images of all the tested images were improved from approximately 0.5 pixel to 0.1 pixel. The geometric quality of the stitched images was thereby improved.
Funder
Hubei University of Technology
National Natural Science Foundation of China
Northwest Engineering Corporation Limited Major Science and Technology Projects
Subject
Atomic and Molecular Physics, and Optics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献