Dual-channel-in-one temperature-compensated all-fiber-optic vector magnetic field sensor based on surface plasmon resonance

Author:

Hao ZijianORCID,Pu Shengli1ORCID,Lahoubi Mahieddine2,Zhang Chencheng,Liu Weinan

Affiliation:

1. University of Shanghai for Science and Technology

2. Badji-Mokhtar Annaba University, Department of Physics

Abstract

All-fiber-optic magnetic field sensor integrated with magnetic fluid has been investigated for decades, accompanied by the commitment to vectorization, miniaturization, integration and solving the temperature cross-sensitivity caused by thermo-optic effect of magnetic fluid. A kind of dual-channel-in-one temperature-compensated all-fiber-optic vector magnetic field sensor was proposed and investigated theoretically in this work. Three optical surfaces, including two sensing surfaces (plated with gold film of 40 nm thickness and then coated with magnetic fluid and polydimethylsiloxane, respectively, referred as CH1 and CH2) and one reflective surface, were integrated on a single-mode fiber tip to facilitate the dual-channel-in-one design. The Kretschmann configurations were formed by the waveguide fiber, gold film and functional materials at the sensing surfaces (CH1 and CH2). Surface plasmon resonance was excited in different wavelength bands corresponding to CH1 and CH2. Attenuation wavelengths corresponding to CH1 and CH2 depend on the magneto-induced and temperature-induced refractive index change of functional materials, respectively, which makes the temperature-compensated magnetic field sensing possible. The non-centrosymmetric evanescent field generated by micro-fiber-tip-prism enables the vector magnetic field sensing. Especially, the length of the sensing area is only 115.5 µm, which achieves ultra-integration and miniaturization. The current work provides a novel scheme for designing all-fiber-optic vector magnetic field sensing based on magnetic fluid and demonstrates the realization of lab-on-a-fiber and then promotes the industrial application of all-fiber-optic vector magnetic field sensing devices.

Funder

National Natural Science Foundation of China

Shanghai Shuguang Program

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3