Ultra-broad edge filter based on a periodically twisted graded-index fiber and its application to a power-interrogated temperature sensor

Author:

Zhu Chengliang123ORCID,Piao Qingxia1,Zhao Yong123,Li HongpuORCID

Affiliation:

1. Northeastern University

2. Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology

3. State Key Laboratory for Integrated Automation of Process Industry

Abstract

A novel and reliable method enabling to produce an ultra-broad edge-filter (UBEF) is firstly proposed and demonstrated both theoretically and experimentally, which is realized by using a periodically-twisted graded-index few-mode fiber (GI-FMF). By using the proposed method, an UBEF with a dynamic wavelength-range up to ∼380 nm is numerically obtained. Furthermore, an UBEF with a linear dynamic range larger than ∼300 nm in wavelength and ∼12.7 dB in power was successfully demonstrated in experiment, which represent the highest performances among all those achieved from the fiber-based optical edge-filters (OEFs) reported to date. The proposed UBEF can be used as an ultra-broadband power interrogation component to well demodulate the wavelength-dependent signal, meanwhile it can be used as a highly-sensitive power-interrogated sensor as well. As typical application example of the proposed UBEF, a power-interrogated temperature sensor has been successfully demonstrated. The temperature responsivities with respect to the power change and the spectral shift are 0.0179 dB/°C and ∼0.49 nm/°C, respectively. The UBEF-based power-interrogated sensing system has the advantages of fast response, low cost, small size and high reliability.

Funder

Yazaki Memorial Foundation for Science and Technology

Japan Society for the Promotion of Science

National Natural Science Foundation of China

Natural Science Foundation of Hebei Province

Colleges and Universities in Hebei Province Science and Technology Research Project

Fundamental Research Funds for the Central Universities

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3