Affiliation:
1. Northeastern University
2. Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology
3. State Key Laboratory for Integrated Automation of Process Industry
Abstract
A novel and reliable method enabling to produce an ultra-broad edge-filter (UBEF) is firstly proposed and demonstrated both theoretically and experimentally, which is realized by using a periodically-twisted graded-index few-mode fiber (GI-FMF). By using the proposed method, an UBEF with a dynamic wavelength-range up to ∼380 nm is numerically obtained. Furthermore, an UBEF with a linear dynamic range larger than ∼300 nm in wavelength and ∼12.7 dB in power was successfully demonstrated in experiment, which represent the highest performances among all those achieved from the fiber-based optical edge-filters (OEFs) reported to date. The proposed UBEF can be used as an ultra-broadband power interrogation component to well demodulate the wavelength-dependent signal, meanwhile it can be used as a highly-sensitive power-interrogated sensor as well. As typical application example of the proposed UBEF, a power-interrogated temperature sensor has been successfully demonstrated. The temperature responsivities with respect to the power change and the spectral shift are 0.0179 dB/°C and ∼0.49 nm/°C, respectively. The UBEF-based power-interrogated sensing system has the advantages of fast response, low cost, small size and high reliability.
Funder
Yazaki Memorial Foundation for Science and Technology
Japan Society for the Promotion of Science
National Natural Science Foundation of China
Natural Science Foundation of Hebei Province
Colleges and Universities in Hebei Province Science and Technology Research Project
Fundamental Research Funds for the Central Universities
Subject
Atomic and Molecular Physics, and Optics
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献