Author:
Deng Boyu,Liu JiangTeng,Zhou Xiaoying
Abstract
The linear dichroism demonstrates promising applications in the fields of polarization-resolved photodetectors and polarization optical imaging. Herein, we study the optical properties of monolayer 1T’-MoS2 based on a four-band effective k · p Hamiltonian within the framework of linear response theory. Owing to the anisotropic band structure, the k-resolved optical transition matrix elements associated with armchair(x) and zigzag(y) direction polarized light exhibit a staggered pattern. The anisotropy of the optical absorption spectrum is shown to sensitively depend on the photon energy, the light polarization and the gate voltage. A gate voltage can continuously modulate the anisotropy of the optical absorption spectra, rendering it isotropic or even reversing the initial anisotropy. This modulation leads to linear dichroism conversions across multiple wavelengths. Our findings are useful to design polarized photodetectors and sensors based on monolayer 1T’-MoS2. Our results are also applicable to other monolayer transition metal dichalcogenides with 1T’ structure.
Funder
National Natural Science Foundation of China
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献