Abstract
In this study, we develop a time-varying metasurface based on the bound states in the continuum (BIC) with variable conductors, to store electromagnetic waves. The storage and retrieval of electromagnetic waves are demonstrated numerically through dynamic switching between quasi-BIC and BIC states by modulating the variable conductors. The storage efficiency exhibits oscillatory behaviors with respect to the timing of storage and retrieval. These behaviors can be attributed to the interference of a resonant mode and a static mode that is formed by direct current. In addition, the storage efficiency of a single-layer metasurface can reach 35% under ideal conditions.
Funder
Japan Society for the Promotion of Science
Subject
Atomic and Molecular Physics, and Optics