Improved STMask R-CNN-based defect detection model for automatic visual inspection of an optics lens

Author:

Tang Haiyang1,Liang Shan,Yao Dan,Qiao Yongjie1

Affiliation:

1. Institute of Southwest Equipment (Chong Qing)

Abstract

A lens defect is a common quality issue that has seriously harmed the scattering characteristics and performance of optical elements, reducing the quality consistency of the finished products. Furthermore, the energy hotspots coming from the high-energy laser through diffraction of optical component defects are amplified step by step in multi-level laser conduction, causing serious damage to the optical system. Traditional manual detection mainly relies on experienced workers under a special light source environment with high labor intensity, low efficiency, and accuracy. The common machine vision techniques are incapable of detecting low contrast and complex morphological defects. To address these challenges, a deep learning-based method, named STMask R-CNN, is proposed to detect defects on the surface and inside of a lens in complex environments. A Swin Transformer, which focuses on improving the modeling and representation capability of the features in order to improve the detection performance, is incorporated into the Mask R-CNN in this case. A challenge dataset containing more than 3800 images (18000 defect sample targets) with five different types of optical lens defects was created to verify the proposed approach. According to our experiments, the presented STMask R-CNN reached a precision value of 98.2%, recall value of 97.7%, F1 score of 97.9%, mAP@0.5 value of 98.1%, and FPS value of 24 f/s, which outperformed the SSD, Faster R-CNN, and YOLOv5. The experimental results demonstrated that the proposed STMask R-CNN outperformed other popular methods for multiscale targets, low contrast target detection and nesting, stacking, and intersecting defects sample detection, exhibiting good generalizability and robustness, as well as detection speed to meet mechanical equipment production efficiency requirements. In general, this research offers a favorable deep learning-based method for real-time automatic detection of optical lens defects.

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3