High sensitivity composite F-P cavity fiber optic sensor based on MEMS for temperature and salinity measurement of seawater

Author:

Xue Ding123,Zhang Hongxia12ORCID,Wang Shuang12,Li Hongzhi3,Jiang Junfeng12ORCID,Jia Dagong12ORCID,Liu Tiegen12

Affiliation:

1. Institute of Optical Fiber Sensing of Tianjin University

2. Tianjin University

3. National Ocean Technology Center

Abstract

We proposed an optical fiber salinity sensor with a composite Fabry-Perot (F-P) cavity structure for simultaneous measurement of temperature and salinity based on microelectromechanical system (MEMS) technology. The sensor contains two sensing cavities. The silicon cavity is used for temperature sensing, and the seawater cavity processed by the glass microstructure is sensitive to the refractive index of seawater for salinity sensing. At the same time, the influence of the salinity-temperature cross-sensitivity error of the seawater cavity is effectively compensated by using the temperature single parameter sensitivity characteristics of the silicon cavity. The structural design of the sensor seawater cavity includes a cross-shaped groove and a cylindrical fluid cavity. The surface hydrophilicity treatment was performed on the interior of the cavity to solve the effect of no water injection in the cavity caused by the miniaturization of the sensor. The optical path difference (OPD) demodulation method is used to demodulate the two F-P cavities with large dynamic range and high resolution. In the range of 5∼40°C and 5∼ 40 ‰, the temperature and salinity sensitivity of the sensor can reach 110.25 nm/°C and 178.75 nm/‰, respectively, and the resolution can reach 5.02 × 10−3°C and 0.0138‰. It has the advantages of mass production, high stability, and small size, which give it great potential for marine applications.

Funder

National Natural Science Foundation of China-Shandong Joint Fund

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3