Controlling the polarization and phase of high-order harmonics with a plasmonic metasurface

Author:

Jalil Sohail A.1,Awan Kashif M.2,Ali Idriss A.1,Rashid Sabaa3,Baxter Joshua3,Korobenko Aleksey1ORCID,Ernotte Guilmot1,Naumov Andrei1,Villeneuve David M.1,Staudte André1,Berini Pierre3ORCID,Ramunno Lora3,Vampa Giulio1

Affiliation:

1. National Research Council of Canada and University of Ottawa

2. University of British Columbia

3. University of Ottawa

Abstract

Nanostructured surfaces, or metasurfaces, allow exquisite control of linear and nonlinear optical processes by reshaping the amplitude, phase, and polarization of electric and magnetic fields near wavelength-scale heterogeneities. Recently, metasurfaces have broken new ground in high-field attosecond science where they have been utilized to amplify the emission of high-order harmonics of femtosecond infrared laser pulses, a notoriously inefficient process, by enhancing the incident field, and to shape the emitted high harmonics in space. Here we show control of the polarization and phase of high harmonics with a plasmonic metasurface. We design and fabricate perpendicularly aligned rectangular gold antennas on a silicon crystal that generate circularly polarized deep-ultraviolet high harmonics, from a circularly polarized infrared driver, providing a simple path for achieving circular emission from patterned crystals. Our metasurface enhances the circularly polarized harmonics up to 43 times when compared to the unpatterned surface, where harmonics are quenched. Looking forward, circularly polarized high harmonics will be useful tools for sensing chiral laser–matter interactions and magnetic materials. Our approach paves the way for polarization control at even shorter, extreme ultraviolet, wavelengths.

Funder

SiEPIC Fab

Advanced Nanofab Facility of the Stewart Blusson Quantum Matter Institute, University of British Columbia

Joint Center for Extreme Photonics

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3