Transport-of-intensity Fourier ptychographic diffraction tomography: defying the matched illumination condition

Author:

Zhou Shun12ORCID,Li Jiaji12ORCID,Sun Jiasong12,Zhou Ning12ORCID,Ullah Habib12,Bai Zhidong12,Chen Qian2ORCID,Zuo Chao12ORCID

Affiliation:

1. Smart Computational Imaging Research Institute (SCIRI) of Nanjing University of Science and Technology

2. Jiangsu Key Laboratory of Spectral Imaging & Intelligent Sense

Abstract

Optical diffraction tomography (ODT) is a promising label-free three-dimensional (3D) microscopic method capable of measuring the 3D refractive index (RI) distribution of optically transparent samples (e.g., unlabeled biological cells). In recent years, non-interferometric ODT techniques have received increasing attention for their system simplicity, speckle-free imaging quality, and compatibility with existing microscopes. However, ODT methods for implementing non-interferometric measurements in high numerical aperture (NA) microscopy systems are often plagued by low-frequency missing problems—a consequence of violating the matched illumination condition. Here, we present transport-of-intensity Fourier ptychographic diffraction tomography (TI-FPDT) to address this challenging issue by combining ptychographic angular diversity with additional “transport of intensity” measurements. TI-FPDT exploits the defocused phase contrast to circumvent the stringent requirement on the illumination NA imposed by the matched illumination condition. It effectively overcomes the reconstruction quality deterioration and RI underestimation problems in conventional FPDT, as demonstrated by high-resolution tomographic imaging of various unlabeled transparent samples (including microspheres, USAF targets, HeLa cells, and C2C12 cells). Due to its simplicity and effectiveness, TI-FPDT is anticipated to open new possibilities for label-free 3D microscopy in various biomedical applications.

Funder

China Postdoctoral Science Foundation

Key National Industrial Technology Cooperation Foundation of Jiangsu Province

Biomedical Competition Foundation of Jiangsu Province

Open Research Fund of Jiangsu Key Laboratory of Spectral Imaging & Intelligent Sense

Fundamental Research Funds for the Central Universities

Youth Foundation of Jiangsu Province

Leading Technology of Jiangsu Basic Research Plan

National Natural Science Foundation of China

National Major Scientific Instrument Development Project

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3