Affiliation:
1. University of California
Abstract
Integrated photonics provides a powerful approach for developing compact, stable, and scalable architectures for the generation, manipulation, and detection of quantum states of light. To this end, several material platforms are being developed in parallel, each providing its specific assets, and hybridization techniques to combine their strengths are available. This review focuses on AlGaAs, a III–V semiconductor platform combining a mature fabrication technology, direct band-gap compliant with electrical injection, low-loss operation, large electro-optic effect, and compatibility with superconducting detectors for on-chip detection. We detail recent implementations of room-temperature sources of quantum light based on the high second- and third-order optical nonlinearities of the material, as well as photonic circuits embedding various functionalities ranging from polarizing beamsplitters to Mach–Zehnder interferometers, modulators, and tunable filters. We then present several realizations of quantum state engineering enabled by these recent advances and discuss open perspectives and remaining challenges in the field of integrated quantum photonics with AlGaAs.
Funder
Ville de Paris
Air Force Office of Scientific Research
National Science Foundation
Agence Nationale de la Recherche
Subject
Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献