Affiliation:
1. INL—International Iberian Nanotechnology Laboratory
2. Universidade de Lisboa
Abstract
The twentieth-century semiconductor revolution began with “man-made crystals,” or p-n junction-based heterostructures. This was the most significant step in the creation of light-emitting diodes (LEDs), lasers, and photodetectors. Nonetheless, advances where resistive p-type doping is completely avoided could pave the way for a new class of n-type optoelectronic emitters and detectors to mitigate the increase of contact resistance and optical losses in submicrometer devices, e.g., nanoLEDs and nanolasers. Here, we show that nanometric layers of AlAs/GaAs/AlAs forming a double-barrier quantum well (DBQW) arranged in an n-type unipolar micropillar LED can provide electroluminescence (EL) (emission at 806 nm from the active DBQW), photoresponse (responsivity of 0.56 A/W at 830 nm), and negative differential conductance (NDC) in a single device. Under the same forward bias, we show that enough holes are created in the DBQW to allow for radiative recombination without the need of p-type semiconductor-doped layers, as well as pronounced photocurrent generation due to the built-in electric field across the DBQW that separates the photogenerated charge carriers. Time-resolved EL reveals decay lifetimes of 4.9 ns, whereas photoresponse fall times of 250 ns are measured in the light-detecting process. The seamless integration of these multi-functions (EL, photoresponse, and NDC) in a single microdevice paves the way for compact, on-chip light-emitting and receiving circuits needed for imaging, sensing, signal processing, data communication, and neuromorphic computing applications.
Funder
HORIZON EUROPE Framework Programme
Subject
Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献