Abstract
Tunable open-access Fabry–Perot microcavities are versatile and widely applied in different areas of photonics research. The open geometry of such cavities enables the flexible integration of thin dielectric membranes. Efficient coupling of solid-state emitters in various material systems has been demonstrated based on the combination of high quality factors and small mode volumes with a large-range in situ tunability of the optical resonance frequency. Here, we demonstrate that by incorporating a diamond micromembrane with a small thickness gradient, both the absolute frequency and the frequency difference between two resonator modes can be controlled precisely. Our platform allows both the mirror separation and, by lateral displacement, the diamond thickness to be tuned. These two independent tuning parameters enable the double-resonance enhancement of nonlinear optical processes with the capability of tuning the pump laser over a wide frequency range. As a proof of concept, we demonstrate a
>
T
H
z
continuous tuning range of doubly resonant Raman scattering in diamond, a range limited only by the reflective stopband of the mirrors. Based on the experimentally determined quality factors exceeding 300,000, our theoretical analysis suggests that, with realistic improvements, a
∼
m
W
threshold for establishing Raman lasing is within reach. Our findings pave the way to the creation of a universal, low-power frequency shifter. The concept can be applied to enhance other nonlinear processes such as second harmonic generation or optical parametric oscillation across different material platforms.
Funder
H2020 Marie Skłodowska-Curie Actions
Swiss National Science Foundation
Swiss Nanoscience Institute
National Center of Competence in Research Quantum Science and Technology
Subject
Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献