Efficient thermally activated delayed fluorescence organic light-emitting device based on an exciplex

Author:

Jiang Xinyan,Chen Huanghuang,Wu ZhifangORCID,Jin Yu,Zhang XiningORCID,Li Xiaoyan,Yang Huishan1,Wu Zhijun2ORCID

Affiliation:

1. Quanzhou Normal University

2. Nanjing University of Posts & Telecommunications

Abstract

An exciplex with significant thermally activated delayed fluorescence properties was realized, comprising diphenyl-[3′-(1-phenyl-1H-phenanthro[9,10-d]imidazol-2-yl)-biphenyl-4-yl]-amine as a donor and 2,4,6-tris[3-(diphenylphosphinyl)phenyl]-1,3,5-triazine as an acceptor. A very small energy difference between the singlet and triplet levels and a large rate constant of the reverse intersystem crossing were attained simultaneously, contributing to the efficient upconversion of triplet excitons from the triplet state to the singlet state and thermally activated delayed fluorescence emission. A high-efficiency organic light-emitting device based on the exciplex was fabricated, which exhibited a maximum current efficiency, power efficiency, external quantum efficiency, and exciton utilization efficiency of 23.1 cd/A, 24.2 lm/W, 7.32%, and 54%, respectively. The efficiency roll-off of the exciplex-based device was slight, as illustrated by a large critical current density of 34.1 mA/cm2. This efficiency roll-off was ascribed to triplet–triplet annihilation, as confirmed by the triplet–triplet annihilation model. We proved the high binding energy of the excitons and excellent charge confinement within the exciplex by performing transient electroluminescence measurements.

Funder

State Key Laboratory of Organic Electronics and Information Displays

National Natural Science Foundation of China

Natural Science Foundation of Fujian Province

Quanzhou City Science and Technology Program

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3