Four-ray interference model for complete characterization of tubular anti-resonant hollow-core fibers

Author:

Xiong YifanORCID,She Shixian,Sun Yizhi,Wang Yingying,Li Maochun1,Zhao Kun1,Yan Miao1,Ding WeiORCID

Affiliation:

1. Tianjin Navigation Instruments Research Institute

Abstract

We propose a comprehensive four-ray interference model based on simple geometric optics that can be employed to characterize all the structural parameters of an anti-resonant hollow-core fiber with tubular cladding structures in a non-invasive and fast way. Combining this model with white-light side-scattering spectroscopy, the outer and the inner radii of the jacket tube can be measured with sub-micron accuracy. The improved illumination source and collimator enable fast spectrum acquisition and identification of the key interference peaks of the four rays. A fitting-based estimate of the interference peaks fully exploits a wealth of spectra acquired at different rotation angles and can help to retrieve the diameter of the cladding tubes with high resolution of 0.17 µm, which exceeds the diffraction limit of the probe light. We also report for the first time, to the best of our knowledge, the polarization and the transverse mode dependences in the side-scattering interference spectra, with which the glass wall thicknesses of the cladding tubes can be estimated on the basis of our four-ray interference model as well.

Funder

National Natural Science Foundation of China

Basic and Applied Basic Research Foundation of Guangdong Province

Fundamental Research Funds for the Central Universities

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3