Design method of dual-band synchronous zoom microscope optical system based on coaxial Kohler illumination

Author:

Zhang Kun,Li Jingchen,Sun Si,Yu Siyang,Chen Qingrong

Abstract

The intrinsic properties of the observed object are closely related to its spectral information, to extend the imaging spectral range of a continuous zoom microscope to obtain more detailed intrinsic properties of the object, this paper proposes a design method of dual-band simultaneous zoom microscope optical system based on the coaxial Koehler uniform illumination. First, the imaging principle of the dual-band simultaneous zoom microscope optical system is theoretically analyzed, and we propose to split the front fixed group of the zoom system into a collimation lens group and a converging lens group to realize the compact design of the system. Then, two different rear fixed groups are used to correct the residual aberration, and a method for solving the initial structure of the dual-band simultaneous zoom microscope optical system is proposed. Finally, a dual-band synchronous zoom microscope optical system is designed using the method proposed in this paper. The design results show that the imaging magnification of the visible (VIS) band is −0.4 to −4.0, the simultaneous imaging magnification ranges are −0.4 to −0.8 in the VIS and short-wave infrared (SWIR) bands, and the magnification difference of its simultaneous zoom imaging is less than 1.25%. In addition, the system has the advantages of good imaging quality, clever design of coaxial illumination, and compact structure, thus verifying the feasibility of the design method.

Funder

Natural Science Foundation of Sichuan Province

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3