Affiliation:
1. Hong Kong University of Science and Technology
2. City University of Hong Kong
3. Southern Medical University
4. City University of Hong Kong Shenzhen Research Institute
Abstract
Filter-based vessel enhancement algorithms facilitate the extraction of vascular networks from medical images. Traditional filter-based algorithms struggle with high noise levels in images with false vessel extraction, and a low standard deviation (σ) value may introduce gaps at the centers of wide vessels. In this paper, a robust technique with less sensitivity to parameter tuning and better noise suppression than other filter-based methods for two-dimensional and three-dimensional images is implemented. In this study, we propose a filter that employs non-local means (NLM) for denoising, applying the vesselness function to suppress blob-like structures and filling the gaps in wide vessels without compromising edge quality or details. Acoustic resolution photoacoustic microscopy (AR-PAM) systems generate high-resolution volumetric photoacoustic images, but their vascular structure imaging suffers from out-of-focal signal-to-noise ratio (SNR) and lateral resolution loss. Implementing a synthetic aperture focusing technique (SAFT) based on a virtual detector (VD) improves out-of-focal region resolution and SNR. Combining the proposed filter with the SAFT algorithm enhances vascular structural imaging in AR-PAM systems. The proposed method is robust and applicable for animal tissues with less error of vasculature structure extraction in comparison to traditional fliter-based methods like Frangi and Sato filter. Also, the method is faster in terms of processing speed and less tuning parameters. We applied the method to a digital phantom to validate our approach and conducted in vivo experiments to demonstrate its superiority for real volumetric tissue imaging.
Funder
National Key Research and Development Program of China
the Innovation and Technology Commission
Research Fund of Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology
Research Grants Council of the Hong Kong Special Administrative Region, China