Author:
Pérez Darío G.,Sepúlveda Marco,Nuñez Leandro
Abstract
We have previously reported [D. G. Perez et al., Imaging Appl. Opt. 2019 (pcAOP), invited talk] that image-plane scintillation index can provide a universal law to extract
C
n
2
—independent of the target shape and light source. Also, we observed
σ
l
2
>
1
on the image plane occurs at any turbulence strength; particularly, as we move from weak to strong optical turbulence the number of pixels with scintillation greater than one increases in the neighborhood of high-contrast regions (edges). As the number of pixels with large scintillation values is observed with higher frequency in targets illuminated with incoherent light, whether wandering plays a mayor influence or not in image-plane scintillation regardless of the turbulent regime is still unknown. In this communication, we have devised a new experiment capable of differentiating the contributions of amplitude and phase to the pixel scintillation. Moreover, structured targets were introduced to distinguish anisotropic regimes, a property that was largely undetected in our original setup.