Abstract
We propose and demonstrate a scheme for Doppler compensated optical cavity enhancement of atom interferometers at significantly increased mode diameters. This overcomes the primary limitations in cavity enhancement for atom interferometry, circumventing the cavity linewidth limit and enabling spatial mode filtering, power enhancement, and a large beam diameter simultaneously. This approach combines a magnified linear cavity with an intracavity Pockels cell. The Pockels cell induces a voltage-controlled birefringence allowing the cavity mode frequencies to follow the Raman lasers as they track gravitationally induced Doppler shifts, removing the dominant limitation of current cavity enhanced systems. A cavity is built to this geometry and shown to simultaneously realise Doppler compensation, a 5.8 ± 0.15 mm1/e2 diameter beam waist and an enhancement factor of >5× at a finesse of 35. Tuneable Gouy phase enables the suppression of higher order spatial modes and the avoidance of regions of instability. Atom interferometers will see increased contrast at extended interferometry times along with power enhancement and the reduction of optical aberrations. This is relevant to power constrained applications in quantum technology, alongside the absolute performance requirements of fundamental science.
Funder
Engineering and Physical Sciences Research Council
Subject
Atomic and Molecular Physics, and Optics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献