Vector spherical wave function truncation in the invariant imbedding T-matrix method

Author:

Zhang YuhengORCID,Ding JiachenORCID,Yang Ping1,Panetta R. Lee1

Affiliation:

1. Texas A&M University

Abstract

Both the computational costs and the accuracy of the invariant-imbedding T-matrix method escalate with increasing the truncation number N at which the expansions of the electromagnetic fields in terms of vector spherical harmonics are truncated. Thus, it becomes important in calculation of the single-scattering optical properties to choose N just large enough to satisfy an appropriate convergence criterion; this N we call the optimal truncation number. We present a new convergence criterion that is based on the scattering phase function rather than on the scattering cross section. For a selection of homogeneous particles that have been used in previous single-scattering studies, we consider how the optimal N may be related to the size parameter, the index of refraction, and particle shape. We investigate a functional form for this relation that generalizes previous formulae involving only size parameter, a form that shows some success in summarizing our computational results. Our results indicate clearly the sensitivity of optimal truncation number to the index of refraction, as well as the difficulty of cleanly separating this dependence from the dependence on particle shape.

Funder

National Science Foundation

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Verification of the physical optics approximation for the calculation of the light scattering matrixes on polyhedral Platonic bodies;29th International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics;2023-10-17

2. Evaluating the accuracy of single-scattering computations by the geometric optics approximation using Platonic solids;Journal of Quantitative Spectroscopy and Radiative Transfer;2023-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3