Generation and control of tornado waves by means of ring swallowtail vortex beams

Author:

Jiang Junjie1ORCID,Xu Danlin1ORCID,Mo Zhenwu1ORCID,Cai Xuezhen1,Huang Haoyu1,Zhang Yong1ORCID,Yang Haobin1ORCID,Huang Haiqi1ORCID,Wu You1ORCID,Shui Lingling1,Deng Dongmei1ORCID

Affiliation:

1. South China Normal University

Abstract

Tornado waves (ToWs), which refer to a light that accelerates and twists over both the radial and the angular directions, have gained a great deal of interest since the concept was introduced by Brimis et al [Opt. Lett. 45, 280 (2020)10.1364/OL.45.000280]. In this paper, we superimpose two pairs of ring swallowtail vortex beams (RSVBs) to generate ToWs and we call them tornado swallowtail waves (ToSWs). Each pair consists of RSVBs while carrying orbital angular momentum of opposite helicity and slightly different with the radius of the main ring of RSVBs. The waves spiral forward and reveal intensity maxima, exhibiting a tornado-like intensity profile during propagation. Meanwhile, the angular acceleration of the ToSWs is illustrated via tracing the angular position of the high-intensity main lobes. It is found that ToSWs present very high values of angular acceleration. Compared with typical tornado waves, ToSWs are more diverse and tunable, giving a new degree of freedom to tailor the propagation dynamics due to the flexibility of the swallowtail diffraction catastrophe. In addition, we confirm such waves experimentally and the results match well with the numerical ones. Also, we demonstrate the ability of optical manipulation of ToSWs for the first time in that they allow for particles not only to be trapped but also to be rotated. Finally, we analyze the poynting vectors and power exchange of ToSWs to demonstrate convincingly the physical mechanism.

Funder

Special Funds for the Cultivation of Guangdong College Students Scientific and Technological Innovation

Program of Innovation and Entrepreneurship for Undergraduates

Science and Technology Program of Guangzhou

National Natural Science Foundation of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3