Phase-change material-assisted all-optical temporal differentiator

Author:

Guo Pengxing1,Yu Sijing1,Hou Weigang1,Guo Lei1

Affiliation:

1. Chongqing University of Posts and Telecommunications

Abstract

This paper proposes a novel microring resonator (MRR)-based all-optical tuning temporal differentiator (DIFF). Specifically, the DIFF uses nonvolatile phase-change material Ge2Sb2Te5 (GST) to achieve low energy consumption and high-speed optical control of the state of the MRR, avoiding the traditional electro-optic (EO) and thermo-optic (TO) tuning designs. By changing the crystallinity of GST to changing the coupling regimes of the MRR, a broad range for the differentiation order α, i.e., 0.47–1.64 can be realized. The intensity response and phase response of the GST-assisted MRR, and normalized intensity in the output of the temporal DIFFs for Gaussian optical pulses have been obtained by simulation. Furthermore, input pulse width and detuning influence on the differentiation order and output deviation are discussed. Finally, our structure can effectively reduce the chip area and power consumption compared with the traditional EO and TO tuning designs.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Chongqing

Chongqing Top-notch Youth Talent Support Project

Chongqing Municipal Education Commission Foundation

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On-Chip Constant-Coefficient Second-Order Differential Equation Solver Based on Microdisk with Dual- Mode Alignment;2023 Asia Communications and Photonics Conference/2023 International Photonics and Optoelectronics Meetings (ACP/POEM);2023-11-04

2. On-chip all-optical second-order ordinary differential equation solver based on a single microdisk resonator;Optics Express;2023-09-26

3. Reconfigurable Spatiotemporal Optical Signal Processors;Advanced Optical Materials;2023-08-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3