Electrically tuned active metasurface towards metasurface-integrated liquid crystal on silicon (meta-LCoS) devices

Author:

Chang Xin,Pivnenko MikeORCID,Shrestha PawanORCID,Wu Weijie,Zhang Wenhan,Chu DapingORCID

Abstract

Active metasurfaces add a new dimension to static metasurfaces by introducing tunability, and this has received enormous attention from industry. Although various mechanisms have been proposed over the past few years in literature, solutions with good practicality are limited. Liquid crystal (LC)-based active metasurface is one of the most promising approaches due to the well-established LC industry. In this paper, an electrically tunable active metasurface was proposed and experimentally demonstrated using photoaligned nematic LC. The good quality of the LC photoalignment on the metasurface was demonstrated. Tunable transmission was obtained for telecommunication C band and the modulation depth in transmission amplitude of 94% was realized for 1530 nm. Sub-millisecond response time was achieved at operating a temperature of 60°C. The progress made here presents the potential of LC-based active metasurfaces for fast-switching photonic devices at optical communication wavelengths. More importantly, this work lays the foundations for the next-generation liquid crystal on silicon (LCoS) devices that are integrated with metasurfaces (meta-LCoS).

Funder

Engineering and Physical Sciences Research Council

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3