Multimode optical phased array for parallel beam steering – feasibility study

Author:

Badal Md Torikul Islam,Scott James,Wang KeORCID

Abstract

Silicon integrated Optical Phased Arrays (OPA) have been widely studied for wide and accurate beam steering applications, taking advantage of the high power handling capability, the stable and precise optical beam control, and the CMOS fabrication compatibility to realize low-cost devices. Both one-dimensional and two-dimensional silicon integrated OPAs have been demonstrated, and beam steering over a large angular range with versatile beam patterns have been achieved. However, existing silicon integrated OPAs are based on single mode operation, tuning the phase delay of the fundamental mode amongst phased array elements and generating a beam from each OPA. Whilst generating more beams for parallel steering are feasible by using multiple OPAs integrated on the same silicon circuit, the device size, complexity as well as power consumption increase substantially. To overcome these limitations, in this research, we propose and demonstrate the feasibility of designing and using multimode OPA to generate more than one beam from the same silicon integrated OPA. The overall architecture, multiple beam parallel steering operation principle, and key individual components are discussed. Results show that with the simplest two modes operation, the proposed multimode OPA design principle can realize parallel beam steering to reduce the number of beam steering required over the target angular range and the power consumption by almost 50%, whilst minimizing the device size by more than 30%. When the multimode OPA operates with a larger number of modes, the improvements on the number of beam steering, the power consumption and the size increase further.

Funder

Australian Research Council

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3