Experimental demonstration of an optics-based 4-PSK half-adder using nonlinear wave mixing

Author:

Song HaoORCID,Zou KaihengORCID,Zhou Huibin,Karapetyan Narek,Minoofar AmirORCID,Su XinzhouORCID,Almaiman Ahmed1ORCID,Habif Jonathan L.2,Tur Moshe3,Willner Alan E.4

Affiliation:

1. King Saud University

2. University of Southern California,

3. Tel Aviv University

4. University of Southern California

Abstract

We experimentally demonstrate an optics-based half-adder of two 4-phase-shift-keying (4-PSK) data channels using nonlinear wave mixing. The optics-based half-adder has two 4-ary phase-encoded inputs (i.e., S A and S B ) and two phase-encoded outputs (i.e., Sum and Carry). The input quaternary base numbers {0,1,2,3} are represented by 4-PSK signals A and B with four phase levels. Along with the original signals A and B, the phase-conjugate signal copies A* and B*and phase-doubled signal copies A2 and B2 are also generated to form two signal groups S A (A, A*, A2) and S B (B, B*, B2). All of the above signals in the same signal group are (a) prepared in the electrical domain with a frequency spacing of Δf and (b) generated optically in the same IQ modulator. When combined with a pump laser, group S A mixes with group S B in a periodically poled lithium niobate nonlinear (PPLN) device. At the output of the PPLN device, both the Sum (A2B2) and the Carry (AB + A*B*) are simultaneously generated with four phase levels and two phase levels, respectively. In our experiment, the symbol rates can be varied between 5 Gbaud and 10 Gbaud. The experimental results show that (i) the measured conversion efficiency of two 5-Gbaud outputs is approximately −24 dB for Sum and approximately −20 dB for Carry, and (ii) the measured optical signal-to-noise ratio (OSNR) penalty of the 10-Gbaud Sum and Carry channels is <10 dB and <5 dB, compared with that of the 5-Gbaud channels at the BER of 3.8 × 10−3.

Funder

Defense Advanced Research Projects Agency

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3