Affiliation:
1. City University of Hong Kong
2. Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences
3. University of Chinese Academy of Sciences
Abstract
Integrated lithium niobate (LN) photonics is a promising platform for future chip-scale microwave photonics systems owing to its unique electro-optic properties, low optical loss, and excellent scalability. A key enabler for such systems is a highly linear electro-optic modulator that could faithfully convert analog electrical signals into optical signals. In this work, we demonstrate a monolithic integrated LN modulator with an ultra-high spurious-free dynamic range (SFDR) of
120.04
dB
·
Hz
4
/
5
at 1 GHz, using a ring-assisted Mach–Zehnder interferometer configuration. The excellent synergy between the intrinsically linear electro-optic response of LN and an optimized linearization strategy allows us to fully suppress the cubic terms of third-order intermodulation distortions (IMD3) without active feedback controls, leading to
∼
20
dB
improvement over previous results in the thin-film LN platform. Our ultra-high-linearity LN modulators could become a core building block for future large-scale functional microwave photonic integrated circuits by further integration with other high-performance components like low-loss delay lines, tunable filters, and phase shifters available on the LN platform.
Funder
National Natural Science Foundation of China
Research Grants Council, University Grants Committee
Croucher Foundation
City University of Hong Kong
Subject
Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献