Ultrasensitive enhanced Raman spectroscopy by hybrid surface-enhanced and interference-enhanced Raman scattering with metal-insulator-metal structures

Author:

Liu Kaipeng123,Gong Tiancheng13ORCID,Luo Yunfei13,Kong Weijie13,Yue Weisheng13,Wang Changtao13,Luo Xiangang13ORCID

Affiliation:

1. Institute of Optics and Electronics, Chinese Academy of Sciences

2. University of Electronic Science and Technology of China

3. University of Chinese Academy of Sciences

Abstract

High-sensitivity, reproducible, and low-cost substrate has been a major obstacle for practical sensing application of surface-enhancement Raman scattering (SERS). In this work, we report a type of simple SERS substrate which is composed of metal-insulator-metal (MIM) structure of Ag nanoisland (AgNI)-SiO2-Ag film (AgF). The substrates are fabricated by only evaporation and sputtering processes, which are simple, fast and low-cost. By combining the hotspots and interference-enhanced effects in AgNIs and the plasmonic cavity (SiO2) between AgNIs and AgF, the proposed SERS substrate shows an enhancement factor (EF) of 1.83 × 108 with limit of detection (LOD) down to 10−17 mol/L for rhodamine 6 G (R6G) molecules. The EFs are ∼18 times higher than that of conventional AgNIs without MIM structure. In addition, the MIM structure shows excellent reproducibility with relative standard deviation (RSD) less than 9%. The proposed SERS substrate is fabricated only with evaporation and sputtering technique and the conventionally used lithographic methods or chemical synthesis are not required. This work provides a simple way to fabricate ultrasensitive and reproducible SERS substrates which show great promise for developing various biochemical sensors with SERS.

Funder

National Natural Science Foundation of China

Sichuan Province Science and Technology Support Program

Youth Innovation Promotion Association of the Chinese Academy of Sciences

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3