Low repetition rate 915 nm figure-9 ultrafast laser with all-fiber structure

Author:

Li Xin,Li Sha,Li Xuan,Wang Yafei1,Cheng Zhi,Xiong YatanORCID,Cao Xinru,Feng Yan2ORCID,Zhou JiaqiORCID

Affiliation:

1. Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, and Advanced Laser and Optoelectronic Functional Materials Department

2. Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences

Abstract

The advent of optical metrology applications has necessitated the development of compact, reliable, and cost-effective picosecond lasers operating around 900 nm, specifically catering to the requirements of precise ranging. In response to this demand, our work introduces an innovative solution—an all-fiber, all-polarization-maintaining (PM) figure-9 mode-locked laser operating at 915 nm. The proposed figure-9 Nd-doped fiber laser has a 69.2 m long cavity length, strategically designed and optimized to yield pulses with a combination of high pulse energy and low repetition rate. The laser can generate 915 nm laser pulses with a pulse energy of 4.65 nJ, a pulse duration of 15.2 ps under the repetition rate of 3.05 MHz. The 1064 nm amplified spontaneous emission (ASE) is deliberately filtered out, in order to prevent parasitic lasing and increase the spectral proportion of the 915 nm laser. The all-PM fiber configuration of this laser imparts exceptional mode-locking performance and environmental robustness, which is confirmed by long-term output power and spectral stability test. This compact and long-term reliable fiber laser could be a promising light source for applications like inter-satellite ranging.

Funder

Youth Innovation Promotion Association of the Chinese Academy of Sciences

National Natural Science Foundation of China

Natural Science Foundation of Shanghai

Publisher

Optica Publishing Group

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3