Affiliation:
1. Aarhus University
2. Université Toulouse III Paul Sabatier
3. Université Paris-Saclay
Abstract
Cold Rydberg atoms are a promising platform for quantum technologies, and combining them with optical waveguides has the potential to create robust quantum information devices. Here, we experimentally observe the excitation of cold rubidium atoms to a large range of Rydberg S and D states through interaction with the evanescent field of an optical nanofiber. We develop a theoretical model to account for experimental phenomena present such as the AC Stark shifts and the Casimir–Polder interaction. This work strengthens the knowledge of Rydberg atom interactions with optical nanofibers and is a critical step toward the implementation of all-fiber quantum networks and waveguide quantum electrodynamics (QED) systems using highly excited atoms.
Funder
Danmarks Grundforskningsfond
Laboratoire d’excellence Physique Atomes Lumière Matière
Japan Society for the Promotion of Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献