Terahertz hybrid optical-plasmonic modes: tunable resonant frequency, narrow linewidth, and strong local field enhancement

Author:

Zheng Xingguo1,Wu Jingrui1,Zhang Jinhua1,Yu Anqi1,Yuan Yinghao1,Guo Xuguang1ORCID,Zhu Yiming12

Affiliation:

1. University of Shanghai for Science and Technology

2. Shanghai Institute of Intelligent Science and Technology, Tongji University

Abstract

Hybrid optical-plasmonic modes have the characteristics of low loss and small mode volume, which will result in the strong localization and enhancement of electromagnetic field. Such advantages of hybrid optical-plasmonic mode are important for the enhancement of light-matter interactions. Here, terahertz (THz) hybrid modes of Fabry-Perot resonances (FPRs) and spoof surface plasmon polaritons (SSPPs) in the modified Otto scheme are investigated both in theoretical and experimental aspects. The device structure is composed of a metal grating silicon waveguide (MGSW) and a metal slit grating (MSG). The two components are vertically stacked with a variable air gap between them. The THz hybrid modes are originated from the far-field coupling of the FPRs and the SSPP supported by the air gap and the MSG, respectively. By changing the thickness of the air gap, the resonant frequency of the FPR-SSPP modes can be tuned in a frequency range of about 0.1 THz. An anti-crossing behavior between two reflection dips corresponding to the guided-mode resonance in the MGSW and the FPR-SSPP mode is observed, which leads to the narrowing of the reflection dips in the anti-crossing region. Numerical simulations show that at the resonant frequencies of FPR-SSPP mode, there is a huge volume-averaged electromagnetic energy enhancement of about 1600 times in the grooves of the MSG, which is around 8.7 times larger than that induced by the SSPP directly launched by free-space electromagnetic field. The hybrid FPR-SSPP modes can be used to construct THz sensors and detectors with high sensitivity.

Funder

National Natural Science Foundation of China

111 Project

Key project supported by Science and Technology Commission Shanghai Municipality

General Administration of Customs

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3