Abstract
Chirality plays an important role in understanding of the chiral light-matter interaction. In this work, we study theoretically and numerically the chirality of optical vortex beams reflected from an air-chiral medium interface. A theoretical model that takes into full account the vectorial nature of electromagnetic fields is developed to describe the reflection of optical vortex beams at an interface between air and a chiral medium. Some numerical simulations are performed and discussed. The results show that the chirality of the reflected vortex beams can be well controlled by the relative chiral parameter of the medium and is significantly affected by the incidence angle, topological charge, and polarization state of the incident beam. Our results provide new, to the best of our knowledge, insights into the interactions between optical vortex beams with chiral matter, and may have potential application in optical chirality manipulation.
Funder
Fundamental Research Funds for the Central Universities
Natural Science Foundation of Guangdong Province
Subject
Atomic and Molecular Physics, and Optics
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献