Abstract
Chaotic dynamics with spectral broadening is experimentally obtained by selective excitation of residual side modes in a distributed-feedback (DFB) laser. For the single-mode laser that emits only at the main mode when free-running, feedback to a residual side mode is introduced via a fiber Bragg grating (FBG). The FBG feedback suppresses the main mode, selectively excites the residual side mode, and generates broadband chaotic dynamics. Such a chaos of the residual side mode has a broad electrical bandwidth reaching at least 26 GHz, which corresponds to a significant broadening by over 50% when compared with the main mode. The dynamics are attributed entirely to the one selected mode without invoking multimode interactions. The wavelength is tunable beyond 10 nm by using different FBGs. Through avoiding multimode interactions, this approach of broadband chaos generation is potentially simple to model and thus promising for applications.
Funder
Research Grants Council of Hong Kong
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献