Spectral power profile optimization of a field-deployed wavelength-division multiplexing network enabled by remote EDFA modeling

Author:

Jones Rasmus T.,Bottrill Kyle R. H.1,Taengnoi Natsupa1,Petropoulos Periklis1ORCID,Yankov Metodi P.ORCID

Affiliation:

1. University of Southampton

Abstract

We propose a technique for modeling erbium-doped fiber amplifiers (EDFAs) in optical fiber networks, where the amplifier unit is located at a distant node outside the laboratory. We collect data on an optical point-to-point link with the amplifier as the only amplification stage. Different amplifier operating points are modeled using probe signals and by adjusting the settings of the amplifier through a control network. The data are used to train a machine learning algorithm integrated within a physical EDFA model. The obtained mathematical model for the amplifier is used to model all amplifiers of a network and links with multiple amplification stages. To confirm the modeling accuracy, we thereafter predict and optimize launch power profiles of two selected links in the network of 439.4 km and 592.4 km lengths. Maximum/average channel optical signal-to-noise ratio prediction errors of 1.41/0.68 dB and 1.62/0.83 dB are achieved for the two multi-span systems, respectively, using the EDFA model trained on the single span system with margin-optimized launch power profiles. Up to 2.2 dB of margin improvements are obtained with respect to unoptimized transmission.

Funder

Innovationsfonden

Engineering and Physical Sciences Research Council

Danish National Research Foundation

Publisher

Optica Publishing Group

Subject

Computer Networks and Communications

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Digital Twin-Enabled Service Optimization Sequence of Actions for Power Equalization;2023 Asia Communications and Photonics Conference/2023 International Photonics and Optoelectronics Meetings (ACP/POEM);2023-11-04

2. Machine learning meets photonics;Emerging Topics in Artificial Intelligence (ETAI) 2023;2023-09-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3