Optomechanical effects caused by non-zero field quantities in multiple evanescent waves

Author:

Li Yaxin1,Yu Xinning23ORCID,Qu Tiantao1,Ng Jack4,Lin Zhifang35,Zhang Lei1,Chen Jun1ORCID

Affiliation:

1. Shanxi University

2. Zhejiang University of Science and Technology

3. Fudan University

4. Southern University of Science and Technology

5. Nanjing University

Abstract

Evanescent waves, with their high energy density, intricate local momentum, and spatial distribution of spins, have been the subject of extensive recent study. These waves offer promising applications in near-field particle manipulation. Consequently, it becomes imperative to gain a deeper understanding of the impacts of scattering and gradient forces on particles in evanescent waves to enhance and refine the manipulation capabilities. In this study, we employ the multipole expansion theory to present analytical expressions for the scattering and gradient forces exerted on an isotropic sphere of any size and composition in multiple evanescent waves. The investigation of these forces reveals several unusual optomechanical phenomena. It is well known that the scattering force does not exist in counter-propagating homogeneous plane waves. Surprisingly, in multiple pairs of counter-propagating evanescent waves, the scattering force can arise due to the nonzero orbital momentum (OM) density and/or the curl part of the imaginary Poynting momentum (IPM) density. More importantly, it is found that the optical scattering force can be switched on and off by simply tuning the polarization. Furthermore, optical forces typically vary with spatial position in an interference field. However, in the interference field generated by evanescent waves, the gradient force becomes a spatial constant in the propagating plane as the particle’s radius increases. This is attributed to the decisive role of the non-interference term of the electromagnetic energy density gradient. Our study establishes a comprehensive and rigorous theoretical foundation, propelling the advancement and optimization of optical manipulation techniques harnessed through multiple evanescent waves. Specifically, these insights hold promise in elevating trapping efficiency through precise control and manipulation of optical scattering and gradient forces, stimulating further explorations.

Funder

National Natural Science Foundation of China

Fundamental Research Program of Shanxi Province

Stable Support Plan Program of Shenzhen Natural Science Fund

Shanxi “1331 Project”

Research Project Supported by Shanxi Scholarship Council of China

Program of Education and Teaching Reform in Shanxi Province

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3