Window size dependence of gain and bandwidth in avalanche photodiodes with multiple multiplication layers under near Geiger-mode operation

Author:

Chang Yan-Chieh,Wu Ye-Kun,Wei Chia-Chien1ORCID,Chang You-Chia2ORCID,Horng Tzyy-Sheng1,Shi Jin-Wei

Affiliation:

1. National Sun Yat-Sen University

2. National Yang-Ming Chiao-Tung University

Abstract

We consider avalanche photodiodes (APDs) functioning under near Geiger-mode operation for extremely weak light (single or several photons) detection, such as in LiDAR receivers. To meet such demands, APDs which simultaneously have a large active window size, moderate bandwidth (∼GHz), and high internal gain (responsivity), are highly desired. However, it is difficult to design APDs capable of meeting the afore-mentioned performance requirements due to the intrinsic limitations of the gain-bandwidth product (GBP). In this work, we demonstrate that the GBP bottleneck in the APDs can be overcome by using multiple (3) In0.52Al0.48As based multiplication (M-) layers with a thick In0.53Ga0.47As absorber (2 µm). Moreover, the characteristic invariant 3-dB bandwidth in our APDs, from low to an extremely high operation gain, becomes more pronounced with an increase of its active window diameter (40 to 200 µm). This characteristic makes it very attractive for collecting weak light in free space as is required for LIDAR receiver applications. Comparison shows that the 200 µm APD exhibits a higher 0.9 Vbr responsivity (15 vs. 7 A/W), larger maximum gain (460 vs. 110), and higher GBP (468 vs. 131 GHz) than does the 40 µm reference sample and can sustain a constant 3-dB bandwidth (1.4 GHz) over a wide range of operation gains (10 to 460). The dependence of the APD performance on the window size can be attributed to the influence of the surface states on the edge of the etched mesa. Here, we further demonstrate a backside-illuminated structure with a flip-chip bonding package which minimizes this phenomenon in small APDs ensuring high-speed performance. Compared with the top-illuminated reference samples, the flip-chip bonding packaged device shows a further enhancement of the responsivity (10.7 vs. 7 A/W), 3-dB bandwidth (4.1 vs. 3.9 GHz), and saturation current (4.25 vs. 3.6 mA). The excellent static and dynamic performance of our flip-chip APD in turn leads to an unprecedented high velocity sensitivity (5 µm/sec) and superior quality 4-D FMCW LiDAR images compared to that obtainable with p-i-n-based or top-illuminated reference devices with the same small active window size (40 µm).

Funder

National Science and Technology Council

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3