Affiliation:
1. The University of North Carolina-Chapel Hill
Abstract
We investigated the morphology and intracellular motility of mammary epithelial cell (MCF10DCIS.com) spheroids cultured in 3D artificial extracellular matrix under perfluorooctanoic acid (PFOA) exposure. Dynamic optical coherence tomography (OCT) was employed for real-time, non-invasive imaging of these spheroids longitudinally over 12 days under PFOA exposures up to 500 µM. Despite no significant changes in volume or asphericity of spheroids, morphological alterations were observed in OCT images of spheroids at 100 µM on Day 12 and from Day 4 at 500 µM. Intracellular motility was assessed by the inverse-power-law exponent of the speckle fluctuation spectrum (α), and an autocorrelation-based motility amplitude (M). Linear regression indicated that both PFOA concentration and culture time are highly significant predictors for both α and M (p < 0.001 for all). Both PFOA concentration and culture time have positive associations with α and negative association with M, where increased α indicates suppression of higher frequency fluctuations (∼> 2 Hz) relative to those at lower frequencies, and decreased M indicates overall suppression of intracellular motility. This study can lead to the future development of biomarkers for per- and polyfluoroalkyl substances (PFAS) exposure using dynamic OCT and its associated toolkit of quantitative metrics.
Funder
National Institutes of Health
National Science Foundation