Imaging ultrafast evolution of subwavelength-sized topography using single-probe structured light microscopy

Author:

Xu Jie1,Min Changjun1,Zhang Yuquan1,Ni Jielei1,Cao Gengwei1,Wei Qianyi1,Yang Jianjun2,Yuan Xiaocong1

Affiliation:

1. Shenzhen University

2. Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences

Abstract

Imaging ultrafast processes in femtosecond (fs) laser–material interactions such as fs laser ablation is very important to understand the physical mechanisms involved. To achieve this goal with high resolutions in both spatial and temporal domains, a combination of optical pump–probe microscopy and structured illumination microscopy can be a promising approach, but suffers from the multiple-frame method with a phase shift that is inapplicable to irreversible ultrafast processes such as ablation. Here, we propose and build a wide-field single-probe structured light microscopy (SPSLM) to image the ultrafast three-dimensional topography evolution induced by fs lasers, where only a single imaging frame with a single structured probe pulse is required for topography reconstruction, benefiting from Fourier transform profilometry. The second harmonic of the fs laser is used as the structured probe light to improve spatial lateral resolution into the subwavelength region of 478    nm , and the spatial axial and temporal resolutions are estimated to be 22    nm and 256    fs , respectively. With SPSLM, we successfully image the ultrafast topography evolution of a silicon wafer surface impacted by single and multiple fs pulses. The variable formation and evolution of the laser induced periodic surface structures during an ultrashort time are visualized and analyzed. We believe that SPSLM will be a significant approach for revealing and understanding various ultrafast dynamics, especially in fs laser ablation and material science.

Funder

Guangdong Major Project of Basic and Applied Basic Research

National Natural Science Foundation of China

Leading Talents of Guangdong Province

Natural Science Foundation of Guangdong Province

Shenzhen Science and Technology Program

Jilin Provincial ScienceTechnology Development Project

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3