Tolerance to aberration and misalignment in a two-point-resolving image inversion interferometer

Author:

Schodt David J.12ORCID,Cutler Patrick J.2,Becerra Francisco E.1,Lidke Keith A.1

Affiliation:

1. University of New Mexico

2. Teledyne Scientific & Imaging

Abstract

Image inversion interferometry can measure the separation of two incoherent point sources at or near the quantum limit. This technique has the potential to improve upon current state-of-the-art imaging technologies, with applications ranging from microbiology to astronomy. However, unavoidable aberrations and imperfections in real systems may prevent inversion interferometry from providing an advantage for real-world applications. Here, we numerically study the effects of realistic imaging system imperfections on the performance of image inversion interferometry, including common phase aberrations, interferometer misalignment, and imperfect energy splitting within the interferometer. Our results suggest that image inversion interferometry retains its superiority to direct detection imaging for a wide range of aberrations, so long as pixelated detection is used at the interferometer outputs. This study serves as a guide for the system requirements needed to achieve sensitivities beyond the limits of direct imaging, and further elucidates the robustness of image inversion interferometry to imperfections. These results are critical for the design, construction, and use of future imaging technologies performing at or near the quantum limit of source separation measurements.

Funder

National Science Foundation

National Institutes of Health

Defense Advanced Research Projects Agency

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3