Testing randomness of series generated in an optical Bell’s experiment

Author:

Nonaka Myriam,Agüero Mónica,Kovalsky Marcelo,Hnilo Alejandro

Abstract

The generation of series of random numbers is an important and difficult problem. Appropriate measurements on entangled states have been proposed as the definitive solution to produce series of certified randomness, and quantum optical systems play a major role. However, several reports indicate that random number generators based on quantum measurements have a high rate of series rejected by standard tests of randomness. This is believed to be caused by experimental imperfections and is usually solved by using classical algorithms to extract randomness. This is acceptable to generate random numbers in a single place. In quantum key distribution (QKD) instead, if the extractor is known by an eavesdropper (a situation that cannot be ruled out), the key’s security may be menaced. We use a not-loophole-free, “toy” all-fiber-optic-based setup, mimicking a QKD one operating in the field, to generate binary series and evaluate their level of randomness according to Ville’s principle. The series are tested with a battery of indicators of statistical and algorithmic randomness and nonlinear analysis. The good performance of a simple method to get random series from rejected ones, previously reported by Solis et al. is confirmed and supported with additional arguments. Incidentally, a theoretically predicted relationship between complexity and entropy is verified. Regarding QKD, the level of randomness of series, obtained by applying Toeplitz’s extractor to rejected series, is found to be indistinguishable from the level of non-rejected raw ones.

Funder

Consejo Nacional de Investigaciones Científicas y Técnicas

Office of Naval Research Global

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3