High performance on-chip polarization beam splitter at visible wavelengths based on a silicon nitride small-sized ridge waveguide

Author:

Zheng Xinzhi1,Zhao Chenxi1,Ma Yujie,Qiao Shijun2,Chen Shuai2,Zhang Zhaojie,Yu Mingyang,Xiang Bingxi3ORCID,Lv Jinman,Lu Fei4,Zhou Cangtao,Ruan ShuangchenORCID

Affiliation:

1. Shenzhen University

2. H-chip Technology Group Corporation

3. Shenzhen Technology University

4. Shandong University

Abstract

Due to sensitive scaling of the wavelength and the visible-light absorption properties with the device dimension, traditional passive silicon photonic devices with asymmetric waveguide structures cannot achieve polarization control at the visible wavelengths. In this work, a simple and small polarization beam splitter (PBS) for a broad visible-light band, using a tailored silicon nitride (Si3N4) ridge waveguide, is presented, which is based on the distinct optical distribution of two fundamental orthogonal polarized modes in the ridge waveguide. The bending loss for different bending radii and the optical coupling properties of the fundamental modes for different Si3N4 ridge waveguide configurations are analyzed. A PBS composed of a bending ridge waveguide structure and a triple-waveguide directional coupler was fabricated on the Si3N4 thin film. The TM excitation of the device based on a bending ridge waveguide structure shows a polarization extinction ratio (PER) of ≥ 20 dB with 33 nm bandwidth (624-657 nm) and insertion loss (IL) ≤ 1 dB at the through port. The TE excitation of the device, based on a triple-waveguide directional coupler with coupling efficiency distinction between the TE0 and TM0 modes, shows a PER of ≥ 18 dB with 50 nm bandwidth (580-630 nm) and insertion loss (IL) ≤ 1 dB at the cross port. The on-chip Si3N4 PBS device is found to possess the highest known PER at a visible broadband range and small (43 µm) footprint. It should be useful for novel photonic circuit designs and further exploration of Si3N4 PBSs.

Funder

National Natural Science Foundation of China

Shenzhen Science and Technology Program

Post-doctoral Research Project of Shenzhen Technology University

University-Enterprise Cooperation Project

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3