Abstract
Based on dual-sideband suppressed-carrier (DSB-SC) modulation and two-stage cascaded four-wave-mixing (FWM), a scheme of broadband dual-chirp frequency-modulated continuous-wave (FMCW) laser source is proposed and experimentally demonstrated. First, via a Mach-Zehnder modulator biased at its null point, an original DSB-SC FMCW signal with 4.0 GHz swept-frequency range and 0.2 GHz/μs sweep rate is generated. Next, the original DSB-SC FMCW signal is sent to a 1 km dispersion compensation fiber for implementing first-stage FWM, a dual-chirp FMCW signal with 12.0 GHz swept-frequency range and 0.6 GHz/μs sweep rate is acquired and used as the pump for second-stage FWM. Finally, via second-stage FWM in a 200 m highly nonlinear fiber, a dual-chirp FMCW signal with a swept-frequency range of 36.0 GHz and sweep rate of 1.8 GHz/μs is generated. Taking the FMCW signal generated at different stages as the emitted signal, we evaluate the ranging resolution through fiber-based distance measurement, and the results demonstrate that the achieved ranging resolutions are 5.31 cm, 2.04 cm, and 1.18 cm, respectively. Through equalizing the optical power of generated FMCW signal over the swept-frequency range, the ranging resolution can be further improved.
Funder
Chongqing Natural Science Foundation
National Natural Science Foundation of China
Subject
Atomic and Molecular Physics, and Optics