Automated intelligent design of modified uni-traveling carrier photodectors

Author:

Huang JunjingORCID,Duan Xiaofeng,Liu KaiORCID,Huang YongqingORCID,Ren Xiaomin

Abstract

This paper introduces an automatic intelligent design method for the modified uni-traveling carrier photodetector (MUTC-PD). The conventional photodetector design process often relies on the numerical solution of complex nonlinear partial differential equations to simulate and optimize device performance, which is not only computationally intensive but also inefficient. To overcome this challenge, we apply the charge control principle to calculate the photodetector bandwidth, which improves the computational speed by a factor of approximately 1800 compared to the numerical solution of nonlinear partial differential equations. To further optimize the structure of the photodetector, we incorporate the Velocity Varying Climbing Particle Swarm Optimization (VVCPSO) algorithm. This is an improved algorithm based on the traditional particle swarm algorithm, which is able to quickly find the optimal solution in a complex parameter space. By applying the VVCPSO algorithm, we successfully fine-tuned the photodetector structure and obtained structural parameters with optimal performance. Our thorough verification process confirms that the proposed method is consistent with the results of ATLAS simulation software. Automated design has resulted in a high-performance MUTC-PD with a responsivity of 0.52A/W and a bandwidth of 60 GHz (@-3 V) at a mesa diameter of 16µm. Compared to the pre-optimized device, the bandwidth is increased to three times the original. By reducing the mesa diameter to 4µm, the bandwidth can be further increased to 82 GHz (@-3 V). The proposed method's calculation speed is fast enough, enabling extensive parameter studies to optimize device performance.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3