Flexible manipulation of plasmon dephasing time via the adjustable Fano asymmetric dimer

Author:

Xu Yang1,Qin Yulu12ORCID,Lang Peng1,Ji Boyu1ORCID,Song Xiaowei1,Lin Jingquan1

Affiliation:

1. Changchun University of Science and Technology

2. Peking University

Abstract

It is highly desirable to flexibly and actively manipulate the dephasing time of a plasmon in many potential applications; however, this remains a challenge. In this work, by using femtosecond time-resolved photoemission electron microscopy, we experimentally demonstrated that the Fano resonance mode in the asymmetric nanorod dimer can greatly extend the dephasing time of a femtosecond plasmon, whereas the non-Fano resonance results in a smaller dephasing time due to the large radiative damping, and flexible manipulation of the dephasing time can be realized by adjusting one of the nanorods in the Fano asymmetric dimer. Interestingly, it was found that plasmon resonance wavelengths both appeared red-shifted as the length of the upper or lower nanorods increased individually, but the dephasing time varied. Furthermore, it also indicated that the dephasing time can be prolonged with a smaller ascending rate by increasing the length of both the nanorods simultaneously while keeping the dimer asymmetry. Meanwhile, the roles of radiative and nonradiative damping in dephasing time are unveiled in the process of nanorod length variation. These results are well supported by numerical simulations and calculations.

Funder

National Natural Science Foundation of China

111 Project

Jilin Provincial Key Laboratory of Ultrafast and Extreme Ultraviolet Optics

Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3