Holographic learning to classify optically preprocessed signals

Author:

Garvin C.,Wagner K.

Abstract

Linear optical processors (such as optical spectrum analyzers, correlators, optical Wigner processors, and ambiguity function processors)1 can rapidly extract classification features from wide bandwidth signals. However, with dimension-increasing processing (such as the ambiguity function) the output information rate can massively exceed the input capacity of digital computers used for classification. An optical classifier, such as an adaptive optical neural network,2 however, can potentially provide a throughput rate to match the output of the optical feature extractor. As a demonstration of this concept, a broadband communications signal classfier was constructed by cascading an acousto-optic spectrum analyzer with an adaptive holographic pattern classifier using a photorefractive crystal of Fe:LiNbOr. Experimental results obtained by using this two-stage processor asa shift invariant classifier are included. This configuration requires an error-driven learning pathway for weight modification to implement an adaptive classifier. A multilayer system to classify radar returns from an isolated aircraft by using an adaptive neural network classifying the output of an optical ambiguity function processor is proposed.

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3