Author:
Wen Zhixun,Liu Yating,Wang Jundong,Lian Yeda,Ai Changsheng,Zheng Xuguang
Abstract
Nickel-based superalloys are widely used in key hot-end components such as aero engines and industrial gas turbines due to their excellent comprehensive properties. Real-time monitoring of engine blades and other structures in high-temperature environments can promptly discover possible internal damage to the structure. Optical fiber sensing technology has unique advantages that traditional electrical sensors do not have, such as anti-electromagnetic interference, small size, light weight, and corrosion resistance. The technology is gradually replacing traditional methods and becoming an important means of structural health monitoring. We propose an optical fiber sensor and assembly method that can be used to measure the strain of a nickel-based directionally solidified superalloy in a high-temperature environment more accurately. The proposed technology is simple to manufacture and also has low cost and a high survival rate, which is of great significance for high-temperature strain measurements in aerospace and other fields.
Funder
Taicang Scientific Research Institute Innovation Leading Special Plan
Natural Science Basic Research Plan in Shanxi Province of China
National Science and Technology Major Project
National Natural Science Foundation of China
Subject
Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献