Affiliation:
1. Sandia National Laboratories
Abstract
Quantum state coherent frequency conversion processes—such as Bragg-scattering four-wave mixing (BSFWM)—hold promise as a flexible technique for networking heterogeneous and distant quantum systems. In this Letter, we demonstrate BSFWM within an extended (1.2-m) low-confinement silicon nitride waveguide and show that this system has the potential for near-unity frequency conversion in visible and near-visible wavelength ranges. Using sensitive classical heterodyne laser spectroscopy at low optical powers, we characterize the Kerr coefficient (∼1.55 W−1m−1) and linear propagation loss (∼0.0175 dB/cm) of this non-resonant waveguide system, revealing a record-high nonlinear figure of merit (NFM = γ/α ≈ 3.85 W−1) for BSFWM of near-visible light in non-resonant silicon nitride waveguides. We predict how, at high yet achievable on-chip optical powers, this NFM would yield a comparatively large frequency conversion efficiency, opening the door to near-unity flexible frequency conversion without cavity enhancement and resulting bandwidth constraints.
Funder
Sandia National Laboratories
U.S. Department of Energy
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献