Affiliation:
1. Zhejiang University
2. The Chinese University of Hong Kong
3. Zhejiang Lab
4. Shanxi University
Abstract
Three-dimensional structured illumination microscopy (3D-SIM) plays an essential role in biological volumetric imaging with the capabilities of improving lateral and axial resolution. However, the traditional linear 3D algorithm is sensitive to noise and generates artifacts, while the low temporal resolution hinders live-cell imaging. In this paper, we propose a novel 3D-SIM algorithm based on total variation (TV) and fast iterative shrinkage threshold algorithm (FISTA), termed TV-FISTA-SIM. Compared to conventional algorithms, TV-FISTA-SIM achieves higher reconstruction fidelity with the least artifacts, even when the signal-to-noise ratio (SNR) is as low as 5 dB, and a faster reconstruction rate. Through simulation, we have verified that TV-FISTA-SIM can effectively reduce the amount of required data with less deterioration. Moreover, we demonstrate TV-FISTA-SIM for high-quality multi-color 3D super-resolution imaging, which can be potentially applied to live-cell imaging applications.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Zhejiang Province
Key Research and Development Program of Zhejiang Province
Research Grants Council, University Grants Committee
Zhejiang Lab
Zhejiang Provincial Ten Thousand Plan for Young Top Talents
China Postdoctoral Science Foundation
Subject
Atomic and Molecular Physics, and Optics
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献